3.756 \(\int \frac{1}{(d x)^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}} \, dx\)

Optimal. Leaf size=459 \[ \frac{2 b \left (a+b x^2\right )}{a^2 d^3 \sqrt{d x} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{b^{5/4} \left (a+b x^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{b^{5/4} \left (a+b x^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{b^{5/4} \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{b^{5/4} \left (a+b x^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{\sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{2 \left (a+b x^2\right )}{5 a d (d x)^{5/2} \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

[Out]

(-2*(a + b*x^2))/(5*a*d*(d*x)^(5/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (2*b*(a + b*x^2))/(a^2*d^3*Sqrt[d*x]*Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (b^(5/4)*(a + b*x^2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])
])/(Sqrt[2]*a^(9/4)*d^(7/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (b^(5/4)*(a + b*x^2)*ArcTan[1 + (Sqrt[2]*b^(1/4
)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(Sqrt[2]*a^(9/4)*d^(7/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (b^(5/4)*(a + b*x
^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(2*Sqrt[2]*a^(9/4)*d^(7/2)*S
qrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (b^(5/4)*(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/
4)*b^(1/4)*Sqrt[d*x]])/(2*Sqrt[2]*a^(9/4)*d^(7/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.326733, antiderivative size = 459, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 9, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1112, 325, 329, 297, 1162, 617, 204, 1165, 628} \[ \frac{2 b \left (a+b x^2\right )}{a^2 d^3 \sqrt{d x} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{b^{5/4} \left (a+b x^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{b^{5/4} \left (a+b x^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{b^{5/4} \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{b^{5/4} \left (a+b x^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{\sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{2 \left (a+b x^2\right )}{5 a d (d x)^{5/2} \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/((d*x)^(7/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]),x]

[Out]

(-2*(a + b*x^2))/(5*a*d*(d*x)^(5/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (2*b*(a + b*x^2))/(a^2*d^3*Sqrt[d*x]*Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (b^(5/4)*(a + b*x^2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])
])/(Sqrt[2]*a^(9/4)*d^(7/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (b^(5/4)*(a + b*x^2)*ArcTan[1 + (Sqrt[2]*b^(1/4
)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(Sqrt[2]*a^(9/4)*d^(7/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (b^(5/4)*(a + b*x
^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(2*Sqrt[2]*a^(9/4)*d^(7/2)*S
qrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (b^(5/4)*(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/
4)*b^(1/4)*Sqrt[d*x]])/(2*Sqrt[2]*a^(9/4)*d^(7/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{(d x)^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}} \, dx &=\frac{\left (a b+b^2 x^2\right ) \int \frac{1}{(d x)^{7/2} \left (a b+b^2 x^2\right )} \, dx}{\sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 \left (a+b x^2\right )}{5 a d (d x)^{5/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (b \left (a b+b^2 x^2\right )\right ) \int \frac{1}{(d x)^{3/2} \left (a b+b^2 x^2\right )} \, dx}{a d^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 \left (a+b x^2\right )}{5 a d (d x)^{5/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 b \left (a+b x^2\right )}{a^2 d^3 \sqrt{d x} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (b^2 \left (a b+b^2 x^2\right )\right ) \int \frac{\sqrt{d x}}{a b+b^2 x^2} \, dx}{a^2 d^4 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 \left (a+b x^2\right )}{5 a d (d x)^{5/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 b \left (a+b x^2\right )}{a^2 d^3 \sqrt{d x} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (2 b^2 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{a^2 d^5 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 \left (a+b x^2\right )}{5 a d (d x)^{5/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 b \left (a+b x^2\right )}{a^2 d^3 \sqrt{d x} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (b^{3/2} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a} d-\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{a^2 d^5 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (b^{3/2} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a} d+\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{a^2 d^5 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 \left (a+b x^2\right )}{5 a d (d x)^{5/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 b \left (a+b x^2\right )}{a^2 d^3 \sqrt{d x} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (\sqrt [4]{b} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (\sqrt [4]{b} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (a b+b^2 x^2\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{2 a^2 d^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (a b+b^2 x^2\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{2 a^2 d^3 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 \left (a+b x^2\right )}{5 a d (d x)^{5/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 b \left (a+b x^2\right )}{a^2 d^3 \sqrt{d x} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{b^{5/4} \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{b^{5/4} \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (\sqrt [4]{b} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (\sqrt [4]{b} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 \left (a+b x^2\right )}{5 a d (d x)^{5/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 b \left (a+b x^2\right )}{a^2 d^3 \sqrt{d x} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{b^{5/4} \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{b^{5/4} \left (a+b x^2\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{b^{5/4} \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{b^{5/4} \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{2 \sqrt{2} a^{9/4} d^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0139664, size = 52, normalized size = 0.11 \[ -\frac{2 x \left (a+b x^2\right ) \, _2F_1\left (-\frac{5}{4},1;-\frac{1}{4};-\frac{b x^2}{a}\right )}{5 a (d x)^{7/2} \sqrt{\left (a+b x^2\right )^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d*x)^(7/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]),x]

[Out]

(-2*x*(a + b*x^2)*Hypergeometric2F1[-5/4, 1, -1/4, -((b*x^2)/a)])/(5*a*(d*x)^(7/2)*Sqrt[(a + b*x^2)^2])

________________________________________________________________________________________

Maple [A]  time = 0.236, size = 251, normalized size = 0.6 \begin{align*}{\frac{b{x}^{2}+a}{20\,{d}^{3}{a}^{2}} \left ( 5\,b\sqrt{2} \left ( dx \right ) ^{5/2}\ln \left ( -{ \left ( \sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{dx}\sqrt{2}-dx-\sqrt{{\frac{a{d}^{2}}{b}}} \right ) \left ( dx+\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{dx}\sqrt{2}+\sqrt{{\frac{a{d}^{2}}{b}}} \right ) ^{-1}} \right ) +10\,b\sqrt{2} \left ( dx \right ) ^{5/2}\arctan \left ({ \left ( \sqrt{2}\sqrt{dx}+\sqrt [4]{{\frac{a{d}^{2}}{b}}} \right ){\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}} \right ) +10\,b\sqrt{2} \left ( dx \right ) ^{5/2}\arctan \left ({ \left ( \sqrt{2}\sqrt{dx}-\sqrt [4]{{\frac{a{d}^{2}}{b}}} \right ){\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}} \right ) +40\,b{x}^{2}{d}^{2}\sqrt [4]{{\frac{a{d}^{2}}{b}}}-8\,a{d}^{2}\sqrt [4]{{\frac{a{d}^{2}}{b}}} \right ) \left ( dx \right ) ^{-{\frac{5}{2}}}{\frac{1}{\sqrt{ \left ( b{x}^{2}+a \right ) ^{2}}}}{\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(d*x)^(7/2)/((b*x^2+a)^2)^(1/2),x)

[Out]

1/20*(b*x^2+a)/d^3*(5*b*2^(1/2)*(d*x)^(5/2)*ln(-((a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)-d*x-(a*d^2/b)^(1/2))/(d*x
+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))+10*b*2^(1/2)*(d*x)^(5/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a
*d^2/b)^(1/4))/(a*d^2/b)^(1/4))+10*b*2^(1/2)*(d*x)^(5/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2/b
)^(1/4))+40*b*x^2*d^2*(a*d^2/b)^(1/4)-8*a*d^2*(a*d^2/b)^(1/4))/((b*x^2+a)^2)^(1/2)/a^2/(d*x)^(5/2)/(a*d^2/b)^(
1/4)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{{\left (b x^{2} + a\right )}^{2}} \left (d x\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)^(7/2)/((b*x^2+a)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt((b*x^2 + a)^2)*(d*x)^(7/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.69109, size = 574, normalized size = 1.25 \begin{align*} -\frac{20 \, a^{2} d^{4} x^{3} \left (-\frac{b^{5}}{a^{9} d^{14}}\right )^{\frac{1}{4}} \arctan \left (-\frac{\sqrt{d x} a^{2} b^{4} d^{3} \left (-\frac{b^{5}}{a^{9} d^{14}}\right )^{\frac{1}{4}} - \sqrt{-a^{5} b^{5} d^{8} \sqrt{-\frac{b^{5}}{a^{9} d^{14}}} + b^{8} d x} a^{2} d^{3} \left (-\frac{b^{5}}{a^{9} d^{14}}\right )^{\frac{1}{4}}}{b^{5}}\right ) - 5 \, a^{2} d^{4} x^{3} \left (-\frac{b^{5}}{a^{9} d^{14}}\right )^{\frac{1}{4}} \log \left (a^{7} d^{11} \left (-\frac{b^{5}}{a^{9} d^{14}}\right )^{\frac{3}{4}} + \sqrt{d x} b^{4}\right ) + 5 \, a^{2} d^{4} x^{3} \left (-\frac{b^{5}}{a^{9} d^{14}}\right )^{\frac{1}{4}} \log \left (-a^{7} d^{11} \left (-\frac{b^{5}}{a^{9} d^{14}}\right )^{\frac{3}{4}} + \sqrt{d x} b^{4}\right ) - 4 \,{\left (5 \, b x^{2} - a\right )} \sqrt{d x}}{10 \, a^{2} d^{4} x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)^(7/2)/((b*x^2+a)^2)^(1/2),x, algorithm="fricas")

[Out]

-1/10*(20*a^2*d^4*x^3*(-b^5/(a^9*d^14))^(1/4)*arctan(-(sqrt(d*x)*a^2*b^4*d^3*(-b^5/(a^9*d^14))^(1/4) - sqrt(-a
^5*b^5*d^8*sqrt(-b^5/(a^9*d^14)) + b^8*d*x)*a^2*d^3*(-b^5/(a^9*d^14))^(1/4))/b^5) - 5*a^2*d^4*x^3*(-b^5/(a^9*d
^14))^(1/4)*log(a^7*d^11*(-b^5/(a^9*d^14))^(3/4) + sqrt(d*x)*b^4) + 5*a^2*d^4*x^3*(-b^5/(a^9*d^14))^(1/4)*log(
-a^7*d^11*(-b^5/(a^9*d^14))^(3/4) + sqrt(d*x)*b^4) - 4*(5*b*x^2 - a)*sqrt(d*x))/(a^2*d^4*x^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)**(7/2)/((b*x**2+a)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.2879, size = 383, normalized size = 0.83 \begin{align*} \frac{1}{20} \,{\left (\frac{10 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{3}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{a^{3} b d^{5}} + \frac{10 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{3}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{a^{3} b d^{5}} - \frac{5 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{3}{4}} \log \left (d x + \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{a^{3} b d^{5}} + \frac{5 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{3}{4}} \log \left (d x - \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{a^{3} b d^{5}} + \frac{8 \,{\left (5 \, b d^{2} x^{2} - a d^{2}\right )}}{\sqrt{d x} a^{2} d^{5} x^{2}}\right )} \mathrm{sgn}\left (b x^{2} + a\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x)^(7/2)/((b*x^2+a)^2)^(1/2),x, algorithm="giac")

[Out]

1/20*(10*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))
/(a^3*b*d^5) + 10*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2
/b)^(1/4))/(a^3*b*d^5) - 5*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/
b))/(a^3*b*d^5) + 5*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^
3*b*d^5) + 8*(5*b*d^2*x^2 - a*d^2)/(sqrt(d*x)*a^2*d^5*x^2))*sgn(b*x^2 + a)